Supporting Evidences And Monitoring To
Develop School-Based Curriculum For Junior High School Mathematics In
Indonesia
By Dr. Marsigit M.A.
Kesimpulan Membaca
Oleh Kusuma Wardhani (10305144022)
http://garfieldq10.blogspot.com/
Sekolah berbasis kurikulum dapat menjadi titik awal bagi guru
matematika di Indonesia untuk mencerminkan dan memindahkan paradigma
mereka yang lama dalam pengajaran. Ini mendorong para guru untuk
mengevaluasi kekuatan dan kelemahan dari pendekatan yang berbeda dalam
rangka untuk membuat pilihan informasi dan, bila diperlukan, harus siap
untuk belajar keterampilan baru dalam kepentingan pengajaran yang
efektif belajar matematika. Melalui kurikulum baru, guru harus mampu
merespon masing-masing anak sebagai kebutuhan yang diidentifikasi karena
kurikuler pengalaman yang relevan dan keterampilan anak-anak sangat
bervariasi.
Pemantauan pelaksanaan kurikulum berbasis sekolah
menunjukkan bahwa ada faktor-faktor dari siswa, guru dan masyarakat yang
belum didukung secara optimal. Hasil evaluasi pelaksanaan kurikulum
baru ini mengajarkan kita bahwa ketika kita mengoperasikan kurikulum,
kita selalu butuh untuk memperbaikinya. Hal ini juga menyarankan bahwa
untuk meningkatkan kualitas pendidikan matematika, yang perlu dilakukan
pemerintah pusat: (1) mendefinisikan peran guru yaitu mereka harus
memfasilitasi siswa saat belajar, (2) mendefinisikan peran kepala
sekolah yaitu mereka harus mendukung pengembangan profesional guru
dengan memungkinkan mereka untuk hadir dan berpartisipasi dalam
pertemuan-pertemuan dan pelatihan, (3) mendefinisikan kembali peran
sekolah yaitu mereka harus mempromosikan manajemen berbasis sekolah, (4)
mendefinisikan peran pengawas yaitu mereka harus mengawasi para guru
agar mampu melakukan akademik
supervisi, (5) (6) mempromosikan kolaborasi yang lebih baik antara sekolah dan universitas (7)
mendefinisikan sistem evaluasi nasional
Sabtu, 31 Desember 2011
Kamis, 10 November 2011
Judulnya nanti
Analisis Data Statistik Regresi Ganda Untuk Memperoleh Model Terbaik
Terdapat Data sebagai berikut:
X1 | X2 | X3 | X4 | X5 | Y |
54 | 211 | 32 | 395 | 553 | 125 |
56 | 200 | 12 | 373 | 547 | 122 |
45 | 256 | 12 | 81 | 637 | 142 |
58 | 250 | 13 | 393 | 698 | 130 |
58 | 234 | 34 | 300 | 69 | 125 |
41 | 256 | 14 | 384 | 645 | 100 |
40 | 245 | 12 | 401 | 70 | 114 |
40 | 250 | 21 | 386 | 732 | 117 |
41 | 300 | 12 | 398 | 678 | 121 |
45 | 225 | 12 | 397 | 791 | 123 |
45 | 228 | 31 | 597 | 395 | 125 |
46 | 263 | 12 | 929 | 373 | 100 |
47 | 236 | 12 | 286 | 381 | 113 |
48 | 241 | 14 | 603 | 393 | 140 |
44 | 312 | 24 | 698 | 507 | 168 |
40 | 320 | 13 | 659 | 52 | 125 |
45 | 322 | 13 | 645 | 54 | 145 |
53 | 356 | 22 | 70 | 553 | 147 |
50 | 358 | 34 | 732 | 547 | 136 |
52 | 357 | 13 | 678 | 637 | 146 |
52 | 345 | 22 | 791 | 698 | 123 |
56 | 289 | 12 | 954 | 659 | 102 |
45 | 267 | 23 | 942 | 645 | 104 |
46 | 214 | 14 | 429 | 70 | 125 |
54 | 250 | 12 | 136 | 553 | 129 |
38 | 263 | 21 | 392 | 547 | 178 |
45 | 300 | 11 | 55 | 637 | 125 |
54 | 312 | 21 | 233 | 698 | 156 |
54 | 325 | 12 | 216 | 308 | 124 |
52 | 345 | 32 | 381 | 312 | 142 |
————— 11/10/2011 10:18:59 AM ————————————————————
Best Subsets Regression: Y versus X1, X2, X3, X4, X5
Response is Y
Mallows X X X X X
Vars R-Sq R-Sq(adj) Cp S 1 2 3 4 5
1 11.9 8.7 3.4 17.737 X
1 6.1 2.8 5.3 18.304 X
2 21.1 15.3 2.3 17.091 X X
2 16.0 9.8 4.0 17.630 X X
3 26.6 18.1 2.5 16.798 X X X
3 21.6 12.5 4.2 17.367 X X X
4 28.0 16.5 4.0 16.966 X X X X
4 26.6 14.9 4.5 17.127 X X X X
5 28.0 13.0 6.0 17.316 X X X X X
Model terbaik adalah Y=β0+β2X2+β3X3+β4X4+ε,karena memiliki nilai R2adj=18,1 terbesar,R2=26,6, Cp Mallows=2,5(≤6) dan S=16,798 terkecil
Stepwise Regression: Y versus X1, X2, X3, X4, X5
Forward selection. Alpha-to-Enter: 0.25
Response is Y on 5 predictors, with N = 30
Step 1 2 3
Constant 92.12 97.12 90.59
X2 0.133 0.153 0.142
T-Value 1.94 2.28 2.14
P-Value 0.062 0.031 0.042
X4 -0.022 -0.024
T-Value -1.78 -1.93
P-Value 0.087 0.064
X3 0.57
T-Value 1.40
P-Value 0.174
S 17.7 17.1 16.8
R-Sq 11.87 21.10 26.60
R-Sq(adj) 8.73 15.26 18.14
Mallows Cp 3.4 2.3 2.5
Model terbaik adalah Y=β0+β2X2+β3X3+β4X4+ε,karena memiliki nilai R2adj=18,14 terbesar,R2=26,60 terbesar, Cp Mallows=2,5(≤4) dan S=16,8 terkecil
Stepwise Regression: Y versus X1, X2, X3, X4, X5
Backward elimination. Alpha-to-Remove: 0.1
Response is Y on 5 predictors, with N = 30
Step 1 2 3 4
Constant 107.60 107.52 90.59 97.12
X1 -0.38 -0.38
T-Value -0.68 -0.70
P-Value 0.505 0.492
X2 0.145 0.145 0.142 0.153
T-Value 2.12 2.17 2.14 2.28
P-Value 0.045 0.040 0.042 0.031
X3 0.63 0.63 0.57
T-Value 1.46 1.50 1.40
P-Value 0.157 0.147 0.174
X4 -0.025 -0.025 -0.024 -0.022
T-Value -1.95 -1.99 -1.93 -1.78
P-Value 0.063 0.058 0.064 0.087
X5 -0.000
T-Value -0.02
P-Value 0.982
S 17.3 17.0 16.8 17.1
R-Sq 28.01 28.01 26.60 21.10
R-Sq(adj) 13.01 16.49 18.14 15.26
Mallows Cp 6.0 4.0 2.5 2.3
Model terbaik adalah Y=β0+β2X2+β3X3+β4X4+ε,karena memiliki nilai R2adj=18,14 terbesar,R2=26,60, Cp Mallows=2,5(≤6) dan S=16,8 terkecil
Stepwise Regression: Y versus X1, X2, X3, X4, X5
Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15
Response is Y on 5 predictors, with N = 30
Step 1 2
Constant 92.12 97.12
X2 0.133 0.153
T-Value 1.94 2.28
P-Value 0.062 0.031
X4 -0.022
T-Value -1.78
P-Value 0.087
S 17.7 17.1
R-Sq 11.87 21.10
R-Sq(adj) 8.73 15.26
Mallows Cp 3.4 2.3
Model terbaik adalah Y=β0+β2X2+β4X4+ε,karena memiliki nilai R2adj=15,26 terbesar,R2=21,10 terbesar, Cp Mallows=2,3(≤3) dan S=17,1 terkecil
Dengan mengambil model terbaik yaitu Y=β0+β2X2+β3X3+β4X4+ε kemudian dilakukan pengecekan asumsi-asumsi dalam analisis regresi linear ganda.
Regression Analysis: Y versus X2, X3, X4
The regression equation is
Y = 90.6 + 0.142 X2 + 0.568 X3 - 0.0241 X4
Predictor Coef SE Coef T P VIF
Constant 90.59 19.07 4.75 0.000
X2 0.14198 0.06621 2.14 0.042 1.042
X3 0.5682 0.4070 1.40 0.174 1.027
X4 -0.02414 0.01248 -1.93 0.064 1.037
S = 16.7980 R-Sq = 26.6% R-Sq(adj) = 18.1%
Analysis of Variance
Source DF SS MS F P
Regression 3 2659.4 886.5 3.14 0.042
Residual Error 26 7336.5 282.2
Total 29 9995.9
Source DF Seq SS
X2 1 1186.8
X3 1 417.1
X4 1 1055.4
Unusual Observations
Obs X2 Y Fit SE Fit Residual St Resid
15 312 168.00 131.68 4.93 36.32 2.26R
26 263 178.00 130.40 3.58 47.60 2.90R
R denotes an observation with a large standardized residual.
Durbin-Watson statistic = 1.92253
Uji Heterokedastisitas

Dari grafik diatas dapat dilihat bahwa pada titik-titik pencar tidak terbentuk pola yang jelas, maka tidak terjadi heteroskedastisitas. Jadi asumsi ini terpenuhi.
Uji Normalitas

Pada grafik diatas terlihat titik-titik (sisaan) menyebar disekitar garis diagonal dan mengikuti arah garis diagonal, maka model regresi memenuhi asumsi normalitas.
Uji Linearitas

Kriteria: pada grafik plot tersebut asumsi linearitas terpenuhi karena pada grafik tersebut menunjukkan plot yang berpencar secar acak. Sehingga asumsi linearitas terpenuhi dalam regresi terpenuhi.
Uji Autokorelasi
1. Hipotesis
Ho: r = 0 (Tidak ada autokorelasi)
H1:r > 0 (Ada autokorelasi positif)
2. Taraf nyata
α=0,05
3. Kriteria keputusan
p= 6, n= 30
k= 6-1=5
dL=1,071 dU= 1,833
Ho diterima jika d >dU
d > 1,833
4. Perhitungan
d= Durbin-Watson statistic = 1.92253
5. Kesimpulan
Ho diterima karena d > 1,833
Jadi tidak ada autokorelasi
Sehingga data tersebut memenuhi karena tidak ada autokorelasi.
Langganan:
Postingan (Atom)